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We consider Brownian motion in the presence of an external and a weakly
coupled pair interaction potential and show that its stationary measure is a
Gibbs measure. Uniqueness of the Gibbs measure for two cases is shown. Also
the typical path behaviour, the degree of mixing and some further properties are
derived. We use cluster expansion in the small coupling parameter.
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1. INTRODUCTION

Gibbs measures are well-studied objects for models of discrete state space
or point processes in the continuum. For such Gibbs measures a number of
powerful techniques are available, among them cluster expansion methods.

There are cases where the understanding of Gibbs measures becomes
important in a more complicated set-up. One example is the investigation
of certain quantum systems by using the Feynman–Kac formula. This
approach makes possible to describe the properties of specific quantum
systems in terms of Gibbs measures associated with stochastic processes
defined on path space. In the simplest case of a single non-relativistic
quantum particle placed under a potential this approach reduces to study-
ing so called P(f)1-processes, i.e., a particular class of Markov processes
in Rd. (1, 17)

The present work is motivated by similar problems, specifically the
investigation of systems consisting of a quantum particle interacting with a



quantum field. Perhaps the simplest such case is Nelson’s model with the
following action (in its so called ‘‘Euclidean form;’’ see refs. 2 and 12 for
details):

S({qt, ft})=F
R

d
F (ḟ2

t (x)+Nft(x)2) dx dt+F (q̇2
t +V(qt)) dt

+e F
R

d
F ft(x) r(qt −x) dx dt. (1.1)

Here ft(x) represents the Euclidean quantum field on space-time Rd ×R,
{qt} is a path of the particle in Rd, V is the external potential acting on the
particle, r > 0 is the ‘‘smeared’’ charge distribution (with >Rd r(x) dx=1),
and e is the coupling constant. Formally, the probability measure on the
joint paths {qt, ft} is given by the Feynman–Kac formula:

dP ‘‘=’’
1
Z

e−S(qt, ft(x)) D
x, t

dft(x) D
t

dqt. (1.2)

This formula turns out to be very useful in studying the ground state of the
quantum system, but to give first a mathematically meaningful sense to it
we have to construct the corresponding stationary Markov process on the
state space W=SŒ(Rd)×Rd. In this description then the Hilbert space
L2(W, dP), with dP the invariant measure for (1.2), is to be the physical
space of the interacting system, and the generator of the stochastic
semigroup associated with the process is identified as the Hamiltonian of
the system. By using the special form of the action given by (1.1) we can
compute the probability measure conditional on a fixed path which will
appear as a Gaussian measure on C(R, SŒ(Rd)). Then by integrating over
the field variables we obtain the marginal distribution for paths {qt}
heuristically given by

dm ‘‘=’’
1

normalization
e−> (q̇2

t +V(qt)) dte−>> W(qt −qs, s− t) ds dt D
t

dqt

=
1
Z

e−>> W(qt −qs, s− t) ds dt dm0 (1.3)

where dm0 is the stationary measure associated with the P(f)1-process
generated by the potential V, and Z is the normalizing partition function.
Moreover, the pair potential is given in this case by

W(q, t)=−
e2

8
F
R

d

|r̂(k)|2

|k|
e−|k| |t| cos(k · q) dk (1.4)
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( r̂ is the Fourier transform of r). Formula (1.3) shows that the relevant
measure can be thought of as being a Gibbs measure relative to Brownian
motion for external potential V and pair potential W (or, equivalently,
simply for W modifying the P(f)1-measure for V taken as reference),
defined on path space. In order to carry through the Euclidean construc-
tion we will need this measure in the infinite-time limit. One of the basic
results we obtain in this paper is that this limit Gibbs measure does exist in
a specific sense.

Although Nelson’s model provides a clear-cut motivation, we look
here at the existence and properties of Gibbs measures of the type (1.3) for
more general potentials than the one discussed above. This more general
perspective may be interesting at least for other possible applications such
as in stochastic partial differential equations (see ref. 9) and continuum
limits of models of systems of real-valued lattice spins. We choose the pair
potential in two ways: One is allowing it to grow at most quadratically in
the space component and decay with a power larger than 2 of time, the
other is choosing it uniformly bounded in the spatial variable and falling
off in time with a power larger than 1. (In particular, the Nelson model is
covered by the latter, and its dipole-approximation by the former.) The one-
body potential will be assumed sufficiently strong-binding so that the
associated Schrödinger operator (i.e., the generator of the underlying P(f)1-
process) defines an intrinsically ultracontractive semigroup. We think,
however, that the conditions (A1) below can be further weakened.

The existence of Gibbs measures on path space has been addressed also
in ref. 16, where however the strong restrictions drawn on the potentials
made possible the use of correlation inequalities. In our framework, for
showing existence of a Gibbs measure this is no longer applicable, further-
more no compactness arguments apply and there are also no obvious can-
didates of superstability-like conditions around. The technique we develop
here instead is cluster expansion in its familiar polymer-expansion form.
However, in details we diverge from other existing schemes for in our
context the set-up is essentially different from the commonly used models.
We divide R into intervals and break up the Brownian paths into pieces by
restricting them to these intervals. The system thus appears as a ‘‘spin
chain’’ having as state space the set of Brownian paths on an interval of a
given length, and with an a priori distribution as the invariant measure of
a P(f)1-process. The interaction is provided by a long range pair potential
on whose decay we need sufficiently detailed information (see (A2) below),
while the one-body interaction is subsumed in the reference process. In this
sense our work relates with the problems discussed in refs. 5, 3 and is a
technical simplification over the methods used there. While obviously on the
whole our arguments follow the general lines of cluster expansion (see, e.g.,
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refs. 6, 19, 14, and 8), the basic notion of cluster and the ways of controlling
the estimates and convergence have to be changed essentially. One specific
feature in our approach is exploring the ultracontractivity of the reference
process. The method presented here allows a fairly complete understanding
of the Gibbs measure, beside its existence and uniqueness we also establish
the typical path behaviour and its mixing properties (and more).

The paper is organized as follows. In the next section we define Gibbs
measures as perturbations with a weakly coupled pair interaction of a P(f)1-
reference process. For simplicity we use free boundary conditions. In Sec-
tion 3 we derive the cluster representation of the partition function. Section 4
contains the cluster estimates. In its first subsection we establish the estima-
tes on the weigths of clusters, and in the second we derive another funda-
mental cluster estimate that will lead up to showing the convergence of the
cluster expansion. In Section 5 we look at the typical path behaviour. In the
concluding Section 6 we restrict attention to bounded pair potentials and
show uniqueness and some further properties of the Gibbs measure (this
material being closely related in particular with Nelson’s scalar field model).

2. GIBBS MEASURE FOR AN EXTERNAL AND A PAIR POTENTIAL

Let X=C(R, Rd) be the space of continuous functions from R to Rd,
endowed with the s-field A=s(pt: t ¥ R) generated by the point eval-
uations pt: XQ Rd, X W pt(X)=Xt. (X, A) is the measurable space we
will use in what follows. For a subset [T1, T2] … R we put X[T1, T2]=
C([T1, T2], Rd) and for the corresponding s-field we write A[T1, T2]=s(pt:
t ¥ [T1, T2]) …A. For the interval [−T, T] we will use the notations XT

respectively AT. The Lebesgue measure on Rd will be denoted dld.
Next, consider two functions V: Rd Q R and W: Rd ×Rd ×RQ R

called respectively external potential and pair interaction potential, subject
to the following conditions:

(A1) External potential. V is bounded from below and continuous,
moreover V(x)=a |x|2s+o(|x|2s), with some s > 1 and a > 0.

(A2) Classes of pair interaction potential. W(x1, x2, t−s)=W(x1, x2,
|t−s|), and it is symmetric with respect to interchanging x1 with x2. Moreover,

(A2-1) There is R > 0 and a > 2 such that

|W(x1, x2, t−s)| [ R
|x1 |2+|x2 |2

|t− s|a+1
(2.1)

for every x1, x2 ¥ Rd and t, s ¥ R.
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(A2-2) There is R > 0 and a > 1 such that

|W(x1, x2, t−s)| [
R

|t−s|a+1
(2.2)

for every s, t ¥ R and uniformly in x1, x2 ¥ Rd.

Under assumption (A1) for the associated Schrödinger operator

H=− 1
2 D+V(x) (2.3)

we have that C.0 (Rd) is a form core on which the operator is essentially self-
adjoint and bounded from below. The bottom of the spectrum E0 of H is a
simple eigenvalue, and the corresponding eigenfunction k0 (ground state)
is strictly positive. The semigroup {exp(−tH), t \ 0} exists on L2(Rd, dld),
and it is an integral operator with positive, continuous, uniformly bounded
kernel Gt(x, y). Moreover, the semigroup is intrinsically ultracontractive
meaning the following (see ref. 4). Take the probability measure dn=k2

0 dld

on Rd, and define the isometry j: L2(Rd, dn) Q L2(Rd, dld), f W k0 f. Take
now in L2(Rd, dn) the operator Hn with Dom Hn=j−1(Dom H) and

Hn f=(j−1(H−E0) j) f=
1

k0
(H−E0)(k0 f)=−

1
2

Df−1Nk0

k0
, Nf2

R
d

(2.4)

for every f ¥ Dom Hn. Then the associated semigroup

e−tHnf=
1

k0
e−t(H−E0)k0 f (2.5)

exists for all f ¥ L2(Rd, dn) and t \ 0. Intrinsic ultracontractivity of e−tH

means that e−tHn is ultracontractive, i.e., it maps L2(Rd, dn) into L.(Rd, dn)
continuously, or, equivalently, ||e−tHn||2,. <., -t \ 0.

Consider now a Markov process with stationary measure dn=k2
0 dld

and transition probability density

gt(x | y)=
Gt(x, y)

k0(x) k0(y) e−E0t (2.6)

Denote the probability distribution of this process by dP, and by dP[T1, T2]

its restriction to the field A[T1, T2]. We take this as reference process for
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constructing the finite time Gibbs specification m[T1, T2] on X[T1, T2] with free
boundary conditions

dm[T1, T2](X)=
1

Z[T1, T2]
e−l > T2

T1
> T2

T1
W(Xs, Xt, s− t) ds dt dP(X) (2.7)

for every X ¥X[T1, T2], T1 < T2 ¥ R, and with parameter l ¥ R. Here Z[T1, T2]

is the partition function

Z[T1, T2]=F e−l > T2
T1

> T2
T1

W(Xs, Xt, s− t) ds dt dP(X) (2.8)

turning m[T1, T2] into a probability measure.
Our main result is

Theorem 2.1. Suppose V and W satisfy assumptions (A1) respec-
tively either (A2-1) or (A2-2). Take an arbitrary decreasing sequence T (n)

1

and an increasing sequence T (n)
2 of real numbers, T (n)

1 < T (n)
2 , such that

T (n)
1 Q −., T (n)

2 Q., and |l| [ lg with lg small enough. Then the weak
local limit limn Q. m[T(n)

1 , T(n)
2 ]=m exists and it is a Gibbs probability measure

on (X, A). Moreover, m does not depend on the sequences T (n)
1 , T (n)

2 .

3. CLUSTER EXPANSION FOR THE PARTITION FUNCTION

For simplicity, from now on we take the symmetric interval [−T, T],
and simplify the corresponding subscripts to T. Take a division of [−T, T]
into disjoint intervals yk=(tk, tk+1), k=0,..., N−1, with t0=−T and
tN=T, each of length b, i.e., fix b=2T/N; for convenience we choose N to
be an even number so that the origin is endpoint to some intervals. We
break up a path X into pieces Xyk

by restricting it to yk. The total energy
contribution of the pair interaction can be written in terms of the sum

WT :=F
T

−T
F

T

−T
W(Xt, Xs, s− t) ds dt= C

0 [ i < j [ N−1
Wyi, yj

(3.1)

where with the notation Jij=>yi
dt >yj

W(Xs, Xt, s− t) ds we have

Wyi , yj
=˛

Jij+Jji if |i− j| \ 2
1
2 (Jii+Jjj)+Jij+Jji if |i− j|=1, and i ] 0, j ] N−1

Jij+Jji+
1
2J00 if i=0 and j=1

Jij+Jji+
1
2JN−1N−1 if i=N−1 and j=N−2

(3.2)
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(For keeping the notation simple we do not make explicit the X depen-
dence of these objects.) The following estimate on the double integrals will
be useful later on.

Lemma 3.1. We have

F
yi

dt F
yj

W(Xt, Xs, s− t) ds [ ˛C1b
>yi

X2
yi

(t) dt+>yj
X2

yi
(s) ds

(|j− i−1| b)a+1
(A2-1) case

C2b2

(|j− i−1| b)a+1
(A2-2) case

(3.3)

with some C1, C2 > 0 in each case respectively.

Proof. Take the (A2-1) case; clearly it suffices to consider one term
of the sum. We have

F
yi

dt F
yj

X2
yi

(t)
|t−s|a+1

ds=F
yi

1F
yj

ds
|t−s|a+1
2 X2

yi
(t) dt (3.4)

Furthermore (choosing i < j)

F
yj

ds
|t−s|a+1

[ F
b(j+1)

bj

ds
|s−(i+1) b|a+1

=F
b(j− i)

b(j− i−1)

du
|u|a+1

[
1

a −1
(1+1/k)a−1 −1

(b(k+1))a−1

where k=j−i. Since (1+1/k)a−1 −1 [ C/k with some number C > 0, we
obtain

F
yj

ds
|t−s|a+1

[
C1b

(b(k−1))a+1
(3.5)

with a suitable number C1 > 0. From this the statement follows. For the
case (A2-2) the result is obtained in the same way. L
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By using (3.1) we have

e−lWT= D
0 [ i < j [ N−1

(e−lWyi, yj+1−1)=1+ C
R ]”

D
(yi, yj) ¥R

(e−lWyi, yj −1) (3.6)

Here the summation is performed over all non-empty sets of different pairs
of intervals, i.e., R={(yi, yj): (yi, yj) ] (yiŒ, yjŒ) whenever (i, j) ] (iŒ, jŒ)}.

In order to keep this and the forthcoming summations in hand we
need a few more notations. Two distinct pairs of intervals (yi, yj) and
(yiŒ, yjŒ) will be called directly connected and denoted (yi, yj) ’ (yiŒ, yjŒ) if one
interval of the pair (yi, yj) coincides with one interval of the pair (yiŒ, yjŒ).
A set of connected pairs of intervals is a collection {(yi1 , yj1 ),..., (yin , yjn )} in
which each pair of intervals is connected to another through a sequence
of directly connected pairs, i.e., for any (yi, yj) ] (yiŒ, yjŒ) there exists
{(yk1

, yl1 ),..., (ykm
, ylm )} such that (yi, yj) ’ (yk1

, yl1 ) ’ · · · ’ (ykm
, ylm ) ’

(yiŒ, yjŒ). A set of connected pairs of intervals is called a contour and
denoted by c. We denote by c̄ the set of all intervals that are elements of
the pairs of intervals belonging to a contour c, and by cg the set of time-
points of intervals appearing in c̄. We call two contours c1, c2 disjoint if
they have no intervals in common, i.e., c̄1 5 c̄2=”. Clearly, R can be
decomposed into maximal connected components, i.e., disjoint contours:
R={c1,..., cr} with c̄i 5 c̄j=”, i ] j; i, j=1,..., r.

The sum in (3.6) is then further expanded as

C
R ]”

D
(yi , yj) ¥R

(e−lWyi, yj −1)=C
r \ 1

C
c1,..., cr

D
r

k=1
D

(yi , yj) ¥ ck

(e−lWyi, yj −1) (3.7)

where now summation goes over collections {c1,..., cr} of disjoint contours.
A collection of consecutive intervals {yj, yj+1..., yj+k}, j \ 0, j+k [

N−1 is called a chain. As in the case of contours, +̄ and +g mean the set of
intervals belonging to the chain + and the set of time-points in +, respec-
tively. Two chains +1, +2 are called disjoint if they have no common time-
points, i.e., +g

1 5 +g
2 =”. Take now a non-ordered set of disjoint contours

and disjoint chains, C={c1,..., cr; +1,..., +s}, with some r \ 1 and s \ 0.
Note that such contours and chains may have common timepoints. We use
the notation Cg=(1i cg

i ) 2 (1j +g
j ) for the set of all timepoints appearing

as beginnings or ends of intervals belonging to some contour or chain in C.
Also, we put C̄=(1i c̄i) 2 (1j +̄j) for the set of intervals appearing in C

through entering some contours or chains. Denote by “−c resp. “+c the
leftmost resp. rightmost timepoints belonging to c, and the similar objects
for +. C is called a cluster if {cg

1 ,..., cg
r ; +g

1 ,..., +g
s } is a connected collection

of sets and for every + ¥ C we have that “−+l, “++l ¥1 r
j=1 cg

j . This means
that in a cluster chains have no loose ends.
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Next we fix the positions of path X at the time-points of the division,
i.e., we put Xtk =qk, for all k=0,..., N, with −T=t0 < t1 < · · · < tN=T.
The distribution of path X in interval [−T, T] conditional on the posi-
tions attained at the fixed times is

dPT(Xy0
,..., XyN−1

| Xt0 =q0, Xt1 =q1,..., XtN =qN)=D
N−1

k=0
dPyk

(Xyk
| qk, qk+1)

(3.8)

We use the shorthand at the right hand side for the corresponding condi-
tional probabilities for easing the notation. Let pt0,..., tN (q0,..., qN) be the
density with respect to <N

k=0 dnk(qk) of the joint distribution of positions
of path X measured at the time-points t0,..., tN. Here dnk denotes a copy of
dn for each k=0,..., N. By the Markov property it then follows that

pt0,..., tN (q0,..., qN)=D
N−1

k=0
gb(qk+1 | qk)=D

N−1

k=0
(gb(qk+1 | qk)−1+1)

=1+C
S

D
k: yk ¥S

(gb(qk+1 | qk)−1)

The summation is extended over all non-empty sets S of different pairs of
consecutive time-points. In a way similar as before the latter formula can
be cast in the form

C
S

D
k: yk ¥S

(gb(qk+1 | qk)−1)=C
s \ 1

C
+1,..., +s

D
s

j=1
D

k: yk ¥ +j

(gb(qk+1 | qk)−1)
(3.9)

Here {+1,..., +s} is a collection of disjoint chains, and this formula explains
the way we defined them before.

For every cluster C={c1,..., cr; +1,..., +s} define the function

oC=D
r

l=1
D

(yi, yj) ¥ cl

(e−lWyiyj −1) D
s

m=1
D

k: yk ¥ +m

(gb(qk+1 | qk)−1) (3.10)

Also, introduce the auxiliary probability measure on XT

dPT(X)=D
N−1

k=0
dPyk

(Xyk
| qk, qk+1) D

N

k=0
dnk(qk) (3.11)

and look at

KC=EPT
[oC] (3.12)
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Note that > (gb(qk+1 | qk)−1) dn(qk+1)=> (gb(qk+1 | qk)−1) dn(qk)=0. This
is the reason why from a cluster we rule out chains having loose ends; for
any such chain EPT

[oC]=0.
By putting (2.8), (3.7), (3.8), (3.9), (3.10) and (3.12) together we obtain

the cluster representation of the partition function:

Proposition 3.2. For every T > 0

ZT=1+ C
n \ 1

C
{C1,..., Cn}

D
n

l=1
KCl

(3.13)

Here the summation is performed over non-ordered collections of clusters
{C1,..., Cn} ]” for which Cg

i 5 Cg
j =” whenever i ] j.

As soon as the cluster representation for ZT is established, the exis-
tence of the weak limit measure m :=limT Q. mT follows by the cluster
estimates below and the general arguments of ref. 13, Chapter 3.

4. CLUSTER ESTIMATES

The first crucial estimate for the cluster expansion is given by

Proposition 4.1. For every cluster C we have the bound

|KC | [ D
+ ¥ C

(c1 |l|1/3) |+̄| D
c ¥ C

D
(yi, yj) ¥ c

c2 |l|1/3

(|i− j−1| b)d+1
:=EC(l, d) (4.1)

with some constants c1, c2 > 0 and exponent d > 1.

The details of proof of Proposition 4.1 depend on the particular
assumptions we make on the pair interaction potential. We give below the
proof for the more complicated case and indicate how it becomes simpler
for the other one.

4.1. Proof of Cluster Estimate

We start with potentials V and W satisfying to assumptions (A1) and
(A2-1), respectively.

The cluster estimate (4.1) is based on the following generalized version
of the Hölder inequality.
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Lemma 4.2. Let (Yi, Yi, ji), i=1,..., n be a collection of probability
spaces and take the product (Y, Y, j)=×n

i=1 (Yi, Yi, ji). Let {b1,..., bm},
bk … [1,..., n] :=Nn, be a collection of subsets of the interval Nn. Suppose
{fbi

, i=1,..., m} are functions on (Y, Y, j) measurable with respect to the
sub-s-field Ybk

=×i ¥ bk
Yi …Y. Furthermore, let {nb1

,..., nbm
} be numbers

larger than 1, i=1,..., m, such that for any i ¥Nn

C
bk: i ¥ bk

1
nbk

[ 1 (4.2)

Then

:F
Y
D
m

j=1
fbk

dj : [ D
m

j=1

1F
Ybk

|fbk
|nbk djbk
21/nbk

(4.3)

with (Ybk
, jbk

)=×i ¥ bk
(Yi, ji).

For a proof see ref. 6.
First we estimate the integrals in (3.12) for the Xyk

under fixed
q0,..., qN. We take in the lemma above Yi=C(yi, Rd), i.e., the space of
Brownian paths defined on interval yi with the field Ayi

=Yi, and dji=
dPyi

( · | qi, qi+1), the conditional distribution on C(yi, Rd) appearing in
(3.11). Then we write bk=(i, j) if (yi, yj) ¥ cl, cl ¥ C, and fbk

=e−lWyi, yj −1.
Choose nbk

=nij=A |i−j|D, with some a > D > 1 to be specified below, and
A ¥N such that

C
bk: i ¥ bk

1
nbk

[ C
j: j ] i

1
nij

=
1
A

C
j: j ] i

1
|i− j|D

[
2
A

C
.

k=1

1
kD

[
1
4

(4.4)

Then use Lemma 4.2 to get for any cl ¥ C, l=1, 2,...

:F D
(yi, yj) ¥ cl

(e−lWyi, yj −1) D
N

i=0
dPyi

(Xyi
| qi, qi+1) :

[ D
(yi, yj) ¥ cl

1F |e−lWyi, yj −1|nij dPyi
(Xyi

| qi, qi+1) dPyj
(Xyj

| qj, qj+1)2
1/nij

(4.5)

As a shorthand for

F |e−lWyi, yj −1|nij dPyi
(Xyi

| qi, qi+1) | dPyj
(Xyj

| qj, qj+1) (4.6)
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we write Fni, j
(qi, qi+1, qj, qj+1) if j > i+1, and Fni, i+1

(qi, qi+1, qi+2) if j=
i+1. Thus for C={c1,..., cr; +1,..., +s},

|KC | [ :F D
N

k=0
dnk(qk) D

s

m=1
D

yk ¥ +m

(gb(qk+1 | qk)−1)

× D
r

l=1
D

cl ¥ C

D
(yi, yi+1) ¥ cl

(Fni, i+1
(qi, qi+1, qi+2))1/ni, i+1

× D
r

l=1
D

(yi , yj) ¥ cl
j > i+1

(Fni, j
(qi, qi+1, qj, qj+1))1/nij : (4.7)

follows. Now we apply again Lemma 4.2 to this integral. Take Yi=Rd,
dji=dn, and pick bk according to the following classes. Put b (2)

k =
{i, i+1}, b (3)

k ={i, i+1, i+2} and b (4)
k ={i, i+1, j, j+1}, j > i+1. Take,

moreover, fb
(2)
k

=gb(qi+1 | qi)−1, fb
(3)
k

=Fni, i+1
(qi, qi+1, qi+2) and fb

(4)
k

=
Fni, j

(qi, qi+1, qj, qj+1). By choosing the corresponding Hölder exponents
nb

(2)
k

=4, nb
(3)
k

=A=nj, j+1, and nb
(4)
k

=A |j−i|D, applied with the correct
multiplicities we have then by (4.4)

2
4
+

3
A

+ C
j; j > i+1

4
A |i−j|D

[
1
2
+

4
A

C
.

k=1

1
kD

[ 1 (4.8)

so Lemma 4.2 is applicable. We thus obtain

|KC | [ D
s

m=1
D

yk ¥ +m

1F |gb(qk+1 | qk)−1|4 dnk+1(qk+1) dnk(qk)2
1/4

× D
r

l=1
D

(yi, yi+1) ¥ cl

(Fni, i+1
(qi, qi+1, qi+2) dni(qi) dni+1(qi+1) dni+2(qi+2))1/A

× D
(yi, yj) ¥ cl

j > i+1

(Fnij
(qi, qi+1, qj, qj+1) dni(qi) dni+1(qi+1) dnj(qj) dnj+1(qj+1))1/nij

(4.9)

We are going to estimate now each factor separately.

Lemma 4.3. For sufficiently large b > 0 there exist constants C > 0
and L > 0 independent of b such that

|gb(q | qŒ)−1| [ Ce−Lb (4.10)

uniformly in q, qŒ.
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Proof. As discussed in the previous section, for a potential V satisfying
assumption (A1) the associated Schrödinger semigroup exp(−tH) is intrin-
sically ultracontractive. By the semigroup property e−bHn=e−Hne−(b−2) Hne−Hn

we have then that

|gb(q | qŒ)−1|=:FF g1(q | x)(gb−2(x | y)−1) g1(y | qŒ) dn(x) dn(y) :

[ N2
1
1FF (gb−2(x | y)−1)2 dn(x) dn(y)2

1/2

=N2
1 e−L(b−2) 11+ C

.

n=2
e−2(En −E1)(b−2)21/2

[ Ce−Lb (4.11)

By taking b large enough, C > 0 can be chosen independently of b. Here
N1=||e−Hn||2,., E0 < E1 [ E2 [ · · · are the eigenvalues, and L=E1 −E0 is
the spectral gap of H. We used that the integral (>> (gb−2(x | y)−1)2 ×
dn(x) dn(y))1/2 is the Hilbert-Schmidt norm of gb−2(x | y)−1, moreover
that the infinite sum ;n e−(En −E1) t converges for every t > 0; for details see
ref. 18. L

Next we deal with the second factor in (4.9). We have by (3.3)

|e−lWyi, yi+1
(Xyi

, Xyi+1
) −1|A

[ (|l| |Wyi, yi+1
|)A e |l| |Wyi, yi+1

| A

[ (c1b |l|)A 1F
yi

Xyi
(t)2 dt+F

yi+1

Xyi+1
(t)2 dt2

A

eAc1b |l| (>yi
Xyi

(t)2 dt+>yi+1
Xyi+1

(t)2 dt)

(4.12)

with some c1 > 0. By using (4.11) we get for sufficiently large b that
|gb(q | qŒ)−1| [ Ce−Lb [ CŒ < 1, and thus gb(q | qŒ) \ Cœ > 0, with some
CŒ, Cœ. Hence we also obtain

pti, ti+1, ti+2
(qi, qi+1, qi+2)=gb(qi+1 | qi) gb(qi+2 | qi+1) > const (4.13)

where the bound is independent of qi, qi+1, qi+2 and b, and this leads to the
estimate

F
Fni, i+1

(qi, qi+1, qi+2)
pti, ti+1, ti+2

(qi, qi+1, qi+2)
pti, ti+1, ti+2

(qi, qi+1, qi+2) dn(qi) dn(qi+1) dn(qi+2)

[ const (|l| b)A EP
51F 2b

0
X2

t dt2
A

eAc1b |l| > 2b
0 X2

t dt6 (4.14)
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Take now the case j > i+1 and write for a shorthand Ij(X)=
>yj

X2
t dt. By using (3.3) we arrive at

|Fnij
(qi, qi+1, qj, qj+1)|

[ F 1 |l| c1b(Ii(X)+Ij(X))
(|i− j−1| b)a+1

2nij

×e
c1b |l| nij(Ii(X)+Ij(X))

(|i− j−1| b)a+1 dPb(Xyi
| qi, qi+1) dPb(Xyj

| qj, qj+1)

[
1
2
1 2 |l| C1b

(|i− j−1| b)a+1
2nij

×5F Ii(X)nij e |l| bIi(X) dPb(Xyi
| qi, qi+1) F e |l| bIj(X) dPb(Xyj

| qj, qj+1)

+F Ij(X)nij e |l| bIj(X) dPb(Xyj
| qj, qj+1) F e |l| bIi(X) dPb(Xyi

| qi, qi+1)6

(4.15)
Here we used the inequality for any x1, x2 \ 0, n \ 1

(x1+x2)n [ 2n−1(xn
1+xn

2). (4.16)

Thus for j > i+1 and with the notation

D=max 3Ac1,
c1nij

(|i− j−1| b)a+1
=

c1A |i−j|D

(|i− j−1| b)a+1
4 <., (4.17)

we obtain

F Fnij
(qi, qi+1, qj, qj+1) dn(qi) dn(qi+1) dn(qj) dn(qj+1)

[ const1 2 |l| c1b
(|i− j−1| b)a+1

2nij

EP
51F b

0
X2

t dt2
nij

e |l| Db > b
0 X2

t dt6 EP[e |l| Db > b
0 X2

t dt]
(4.18)

The constant prefactor comes about by dividing and multiplying with the
densities as in the estimate leading up to (4.14).

We now turn to estimating the P-averages appearing above. Consider
the complex function h with parameter m ¥ R

h(z; m)=EP[ez >m
0 X2

t dt]= C
.

n=0

zn

n!
EP
51Fm

0
X2

t dt2
n6 (4.19)
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for z ¥ C. We have

EP
51Fm

0
X2

t dt2
n6 [ mn−1EP

5Fm

0
X2n

t dt6

=mn F
R

d
|x|2n dn(x)

[ mnc F
R

d
|x|2n e−E |x|s+1/(s+1) dld(x)

=
2mnCd

s+1
1 s+1

E
2 (2n+d)/(s+1)

C 12n+d
s+1
2 (4.20)

Here Cd > 0 is a constant dependent on the dimension coming from
integrating over d−1 angular coordinates, and in the inequality above we
used the bound for the ground state

|k0(x)|2 [ ce−E |x|(s+1)/(s−1)
(4.21)

with appropriate constants c, E > 0, see ref. 6. From here and an applica-
tion of Stirling’s formula to the Gamma-function it follows that h(z; m) is
an entire function of order (s+1)/(s−1), (11) and

|h(z; m)| [ c1ec2(m |z|)(s+1)/(s−1)
(4.22)

with appropriate constants c1, c2 > 0. Thus

EP[e |l| Db > kb
0 X2

t dt] [ c1ec2(kb2 |l| D)(s+1)/(s−1)
(4.23)

for both k=1 and k=2. By (4.22) we get also

EP
51F kb

0
X2

t dt2
n

e |l| Db > kb
0 X2

t dt6=1 d
n

dzn h(z; kb)2
z=|l| Db

=
n!

2pi
F
|=−|l| Db|=b`|l|

h(=; kb)
(|l| Db− =)n+1 d=

[
c1n!

(|l| b2)n/2 ec2(kb(|l| Db+b`|l|))(s+1)/(s−1)

[
c1n!

(|l| b2)n/2 e c̄2(b2
`|l|)(s+1)/(s−1)

(4.24)
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for both k=1 and k=2. In the latter bound we used that |l| is small
enough. Combining (4.14) with (4.24) we find (since b > 1)

1F Fni, i+1
(qi, qi+1, qi+2) dn(qi) dn(qi+1) dn(qi+2)2

1/A

[ B`|l| e c̄2(b2
`|l|)(s+1)/(s−1)

(4.25)

where B > 0 is a constant. Similarly, by piecing together (4.18), (4.23) and
(4.24) we find

1F Fnij
(qi, qi+1, qj, qj+1) dn(qi) dn(qi+1) dn(qj) dn(qj+1)2

1/nij

[
c1 `|l| (nij!)1/nij

(|i− j−1| b)a+1
ec2(b2

`|l|)(s+1)/(s−1)

[ B̄b2
`|l|

|i− j|D

(|i− j−1| b)a+1
ec2(b2

`|l|)(s+1)/(s−1)
(4.26)

with some constant B̄ > 0. Take D > 1 such that d :=a − D > 1. Finally,
choose

b=
1

3L
log

1
|l|

(4.27)

From Lemma 4.3 we then have

D
s

m=1
D

yk ¥ +m

1F |gb(qk+1 | qk)−1|4 dnk+1(qk+1) dnk(qk)2
1/4

[ D
s

m=1
(Ce−Lb) |+̄m|

[ D
s

m=1
(c1 |l|1/3) |+̄m|

(4.28)

with |+̄m | denoting the number of intervals yk ¥ +m. Thus moreover
b2
`|l| [ |l|1/3 for small |l|. This and estimates (4.25), (4.26) and (4.28)

combined complete then the proof of Proposition 4.1. L

For pair potentials of type (A2-2) the proof becomes simpler. In par-
ticular, Lemma 4.3 holds unchanged, and the estimates following (4.9)
become more straightforward as the pair potential is uniformly bounded in
the path.

620



4.2. Convergence of the Cluster Expansion

The second fundamental estimate leading up to the proof of Theorem 2.1
and based on (4.1) is

Proposition 4.4. There is a constant c > 0 independent of l, and a
number 0 < g(l) < 1 (with g Q 0 as l Q 0) such that

C
C: C g ¦ 0
|C̄|=n

|KC | [ c gn (4.29)

Proof. In this section we put for a shorthand

e=c1 |l|1/3 and D(c)= D
(yi, yj) ¥ c

e

|i− j−1|d+1
(4.30)

Consider the complex function

H(z; l)= C
C: C g ¦ 0

KCz |C̄|= C
C: C g ¦ 0

C ‡ one contour

KCz |C̄|+ C
C: C g ¦ 0

C ‡ more than one contour

KCz |C̄|

(4.31)

We show that for sufficiently small |l| ] 0 this is an analytic function of
z in a large circle of radius R(l), with R(l) Q. as l Q 0. Moreover, we
show that within this circle H(z; l) is uniformly bounded in l. This will
then imply (4.29) by choosing g(l)=1/R(l).

Let us start by estimating the second sum. Let V={c1,..., cr}, r \ 2 be
a collection of pairwise disjoint contours. We view V as a fixed vertex set
and consider all possible connected graphs G associated with it. Then by
Proposition 4.1 the estimate becomes

: C
C: C g ¦ 0

C ‡ more than one contour

KCz |C̄| :

[ C
r \ 2

C
{c1,..., cr}

C
G

C
s \ 0

× C
{+̂1,..., +̂s}

compatible with G and 0 ¥1 i cgi 2 +̂ g
i

D
r

i=1
((|z| (1+e |z|)) |c̄i | D(ci) D

s

j=1
(e |z|) |+̂̄j|

(4.32)

The sum over G is meant to be taken over all connected graphs with vertex
set V and set of edges {(ci, cj): ci, cj ¥ G; i, j=1,..., r}; connected graphs
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are those for which either cg
i 5 cg

j =” or there exists +l ¥ C such that
+g

l 5 cg
i ]” ] +g

l 5 cg
j . We denoted by {+̂1,..., +̂s} the collection of chains

satisfying to the conditions below:

1. for every pair (ci, cj) ¥ G, cg
i 5 cg

j =”, there is at least one chain
+̂l of this collection connecting ci and cj (i.e., +̄̂l 5 c̄i=”=+̄̂l 5 c̄i and
+̂g

l 5 cg
i ]” ] +̂g

l 5 cg
j ), and for any pair (ci, cj) ¨ G such a chain does not

occur;
2. the sets 1i c̄i and 1j +̄̂j are disjoint, and 1j {“−+̂j, “++̂j} …1i cg

i ;
3. 0 ¥ (1i cg

i ) 2 (1j +̂g
j );

4. each chain +̂k connects some pair (ci, cj) ¥ G (we refer to this event
by ci Y cj), or fills a gap within some contour ci (referred to as ci Y ci).

Note that each +̂ can join only one pair of contours. The collection
{+̂1,..., +̂s} of chains is then constructed in the following way:

1. first remove all chains +l ¥ C for which +̄l …1 r
i=1 c̄i;

2. for all remaining chains +k ¥ C, +̄k ^ …1 r
i=1 c̄i remove all intervals

from the set +̄k 5 (1 r
i=1 c̄i);

3. of the remaining intervals form all possible collections of non-
empty chains denoted by {+̂1,..., +̂m}.

Note that for fixed {c1,..., cr} the collection {+̂1,..., +̂m} can be obtained
from many possible collections of chains {+1,..., +s}. This fact accounts for
the factor (1+e |z|) |c̄| appearing at the right hand side of (4.32).

Thus we get that for any graph G with vertex set V

C
s

C
{+̂1,..., +̂s}

compatible with G and 0 ¥1 i cgi 2 + g
i

D
s

j=1
(e |z|) |+̄̂j|

[ D
(ci , cj) ¥ G

f2(ci, cj) D
ci ¥V

f1(ci)(e |z|)dist(0, {c})/3 (4.33)

with dist(0, {ci})=mini dist(0, ci), dist(0, c)=miny ¥ c dist(0, y), and
dist(0, yi)=N/2−i−1 if N/2−1 \ i, and dist(0, yi)=i−N/2 if N/2 [ i
(remember, N is even). Moreover

f2(ci, cj)= C
{+̂1,..., +̂sŒ}ci Y cj

(1k +̄̂k) 5 (c̄i 2 c̄j)=”

D
s −

l=1
(e |z|)2 |+̄̂l |/3 (4.34)

f1(ci)= C
{+̂1,..., +̂sœ}ci Y ci
(1k +̄̂k) 5 c̄i=”

D
s'

l=1
(e |z|)2 |+̄̂l |/3 (4.35)
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In case no such collections of chains appear we put

f2(ci, cj)=1 (4.36)

In (4.33) we also used that 0 ¥ (1 s
l=1 +̂g

l ) 2 (1i cg
i ) and ; s

l=1 |+̄̂l | \
dist(0, {ci}).

Lemma 4.5. For every collection of disjoint contours {c1,..., cr},
r \ 2 we have the estimate

C
G

D
(ci, cj) ¥ G

f2(ci, cj) [ 2 ; r
i=1 |c̄i | C

T

D
(ci, cj) ¥T

f2(ci, cj) (4.37)

Here the sum at the right hand side is taken over all trees T constructed by
using the vertex set V.

Proof. Use Lemma 8 in Chapter 2, Section 4 of ref. 13 to get

C
G

D
(ci, cj) ¥ G

f2(ci, cj) [ D
(i, j)

(1+f2(ci, cj)) C
T

D
(ci , cj) ¥T

f2(ci, cj) (4.38)

The product <(i, j) is taken over all pairs (i, j), i, j=1,..., r.
For every pair (ci, cj) denote by s (i, j)

1 ,..., s (i, j)
m , m=m(i, j) the chains

of ‘‘free’’ intervals adjacent to some interval in c̄i respectively c̄j. We have
then

1+f2(ci, cj)= C
S … [1,..., m]

D
l ¥S

(e |z|)2 |s(i, j)
l |/3= D

m(i, j)

k=1
(1+(e |z|)2 |s(i, j)

k |/3) [ 2m(i, j)

(4.39)

whenever e |z| [ 1. From here

D
j ] i0

(1+f2(ci0 , cj)) [ 2 ;j ] i0
m(i0, j) [ 22 |c̄i0

| (4.40)

since the number of chains adjacent to contour c0 does not exceed twice the
number of intervals in c0. In the case (4.36) 1+f2(ci, cj)=2, but estimate
(4.40) above stays valid. (4.38) and (4.40) then imply the lemma. L

In a similar way we prove also that

D
r

i=1
f1(ci) [ 2;i |c̄i | (4.41)
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Denote dist(c, cŒ)=miny ¥ c, yŒ ¥ cŒ dist(y, yŒ), dist(yi, yj)=|j−i−1|, j ] i.
For every collection {+̂1,..., +̂sŒ} entering the sum in f2(ci, cj) we have

C
s −

l=1
|+̄l | \ dist(ci, cj) (4.42)

From here we have

f2(ci, cj) [ (e |z|)dist(ci, cj)/3 f̃2(ci, cj) (4.43)

where f̃2 is defined similarly to f2 with (e |z|)2/3 replaced by (e |z|)1/3.
Repeating the arguments from the proof of Lemma 4.5 and estimates (4.41)
and (4.43) we get for any tree T

D
(ci, cj) ¥T

f2(ci, cj) D
r

i=1
f1(ci) [ 24 ; r

i=1 |c̄i | D
(ci, cj) ¥T

(e |z|)dist(ci, cj)/3 (4.44)

Thus we arrive at the estimate

C
C: C g ¦ 0

C ‡ more than one contour

|KC | |z| |C̄|

[ C
.

r=2
C

{c1,..., cr}
D

r

i=1
(16 |z| (1+e |z|)) |c̄i | D(ci)(e |z|)dist(0, {ci})/3

×C
T

D
(ci , cj) ¥T

(e |z|)dist(ci, cj)/3 (4.45)

Next we pass to summation over trees. First, we take the trees con-
structed from the vertex set {1,..., r} obtained through ck W k, -k=1,..., r,
and denote them by T2 . Then we resum in (4.45):

r.h.s. (4.45) [ C
r \ 2

1
r!

C
T2

C
(c1,..., cr)

D
r

i=1
(16 |z| (1+e |z|)) |c̄i | (e |z|)dist(0, {ci})/3 D(ci)

× D
(i, j) ¥T2

(e |z|)dist(ci, cj)/3 (4.46)

The third sum here is performed over all ordered collections of contours
{ci} such that c̄i 5 c̄j=” whenever i ] j. Since

(e |z|)dist(0, {ci})/3 [ C
r

i=1
(e |z|)dist(0, ci)/3 (4.47)
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we get that the right hand side of (4.46) is less than

C
.

r=2

1
r!

C
T2

C
r

i0=1
C

{c1,..., cr}
D

r

i=1
(16 |z| (1+e |z|)) |c̄i | (e |z|)dist(0, ci0

)/3 D(ci)

× D
(i, j) ¥T2

(e |z|)dist(ci, cj)/3 (4.48)

Fix T2 and i0, and estimate first

C
{c1,..., cr}

D
r

i=1
(16 |z| (1+e |z|)) |c̄i | D(ci) D

(i, j) ¥T2
(e |z|)dist(ci, cj)/3 (4.49)

Let j0 ] i0 be an extremal vertex of tree T2 being joint only with vertex k0.
Then

C
cj0

(16 |z| (1+e |z|)) |c̄j0
| D(cj0

)(e |z|)dist(ck0
, cj0

)/3

[ C
yœ ¥ c̄k0

C
cj0

C
yŒ ¥ c̄j0

(e |z|)dist(yŒ, yœ)/3 (16 |z| (1+e |z|)) |c̄j0
| D(cj0

)

[ C
yœ ¥ c̄k0

C
yŒ

(e |z|)dist(yŒ, yœ)/3 C
cj0

: yŒ ¥ c̄j0

(16 |z| (1+e |z|)) |c̄j0
| D(cj0

) (4.50)

Here we used the estimate (e |z|)dist(c, cŒ)/3 [;y ¥ c, yŒ ¥ cŒ (e |z|)dist(y, yŒ)/3, obtained
similarly as in (4.47).

Lemma 4.6. There exists a constant C̄ > 0 such that for any interval
y and number k \ 2

C
c: c̄ ¦ y

|c̄|=k

D(c) [ (C̄e)k−1 (4.51)

Proof.

C
c: y ¥ c̄

|c̄|=k

D(c)= C
y1,..., yk

C
G

D
(yi , yj) ¥ G

e

|i− j−1|d+1
(4.52)

Here G=G(y1,..., yk) denotes connected graphs with vertices y1,..., yk. Note
that for fixed i0
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C
yj: j ] i0

e

|i0 −j−1|d+1
=2e+2 C

.

k=1

e

kd+1

[ 2e+2e C
.

k=1

1
kd

[ C̄e (4.53)

with some C̄ > 0. Thus by using (4.38) we find

C
G

D
(yi , yj) ¥ G

e

|i− j−1|d+1
[ ekC̄e C

T

D
(yi, yj) ¥T

e

|i− j−1|d+1
(4.54)

Now order the collection {y1,..., yk} to get further

C
{y1,..., yk}

C
T

=
1
k!

C
T2

C
(y1,..., yk)

D
(i, j) ¥T2

e

|i− j−1|d+1
(4.55)

At the right hand side the summation goes over all trees T2 constructed on
the vertices {1,..., k}. By the same argument as before we then obtain

C
(y1,..., yk)

D
(yi, yj) ¥T

e

|i− j−1|d+1
[ (C̄e)k−1 (4.56)

Since the number of trees having k vertices is kk−2, (13) by using Stirling’s
formula, (4.54) and (4.55) we get the result. This completes the proof of the
lemma. L

From (4.51) we obtain that (4.50) is less than

C
yœ ¥ c̄k0

C
yŒ

(e |z|)dist(yŒ, yœ)/3 C
.

k=2
(16 |z| (1+e |z|))k (C̄e)k−1

[ |c̄k0
|

16C̄e |z| (1+e |z|)2

(1−(e |z|)1/3)(1−16C̄e |z| (1+e |z|))
(4.57)

From now on we choose z such that 16C̄e |z| (1+e |z|) < 1.
Next we go on by taking the next vertex of T2 , say j1 ] i0 connecting

with k1 (that is, we repeat the procedure for the new tree obtained by
deleting from T2 the vertex j0 and edge (j0, k0). If j1 ] k0, we get again an
estimate of the type (4.57). If j1=k0, then we estimate
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C
yœ ¥ ck1

C
yŒ

(e |z|)dist(yŒ, yœ)/3 C
cj1

: yŒ ¥ c

|c̄j1 | (16 |z| (1+e |z|)) |c̄j1
| D(c)

[
2 |c̄k1

|
1−(e |z|)1/3 C

.

k=2
(16 |z| (1+e |z|))k k(C̄e)k−1

Continuing this procedure inductively we get that after summation over cjm ,
jm ] i0, connected with ckm

, that its net contribution is

2 |c̄km
|

1−(e |z|)1/3 C
.

k=1
(16 |z| (1+e |z|))k k ljm −1(C̄e)k−1

[
2 |ckm

|
1− e |z|

C
.

k=2
(Ĉ |z|)k k ljm −1(C̄e)k−1

[ const |ckm
| Ĉ |z| C

.

k=2
(C̃e |z|)k−1 k lj1 −1

where ljm is the degree of vertex jm, i.e., the number of edges of T2 incident
to jm, and C̃=C̄Ĉ.

Lemma 4.7. We have the bound

C
.

k=2
(C̃e |z|))k−1 km [

2mC̃ee |z| m!
1−C̃ee |z|

(4.58)

Proof. With the notation x=−ln(C̃e |z|) to be used below we have

C
.

k=2
(C̃e |z|)k−1 km [ 2m C

.

k=1
(C̃e |z|)k km

=2m 1− d
dx
2m C

.

k=1
e−kx

=2m m!
2pi

F
|x−=|=1

e−=

1−e−=

d=

(= −x)m+1

[
2mC̃e |z| em!
1−C̃ee |z|

(4.59)

In the first inequality above the bound k+1 [ 2k for k \ 1, and in the
second equality Cauchy’s integral formula has been used. L
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By using Lemma 4.7 above we estimate (4.49) further for fixed ci0 and T2

C
ck: k ] i0
k=1,..., r

D
(i, j) ¥T2

(e |z|)dist(yi, yj)/3 D
i ] i0

D(ci)(16 |z| (1+e |z|)) |c̄i |

[ |c̄i0 |
li0 D

k ] i0

2 ljk(ljk −1)! (Be |z|2) r−1

where we used that e |z| [ 1/(C̃e) and B=const. Thus we need to estimate
(see (4.48))

C
ci0

|c̄i0 |
li0 D(ci0 )(16 |z| (1+e |z|)) |ci0

| (e |z|)dist(0, ci0
)/3

[C
yk

(e |z|)dist(0, y) C
ci: y ¥ ci0

|c̄i0 |
li0 D(ci0 )(16 |z| (1+e |z|)) |ci0

|

By repeating the arguments above we get

C
ci0

: y ¥ ci0

|c̄i0 |
li0 D(ci0 )(16 |z| (1+e |z|)) |ci0

| [ C
.

k=2
k li0(C̄e)k−1 (16 |z| (1+e |z|))k

[ B̄2 li0li0 ! e |z|2

Summation over y gives

C
y

(e |z|)dist(0, y) [ const (4.60)

hence we finally obtain for fixed T2 and i0

2 li0li0 ! D
jk ] i0

2 lk(ljk −1)! c(Be |z|2) r−1 [ c(22Be |z|2) r−1 D
r

k=1
ljk !

where we used the fact that ; r
k=1 ljk =2(r−1) holding for trees. An upper

bound of the number of trees with vertices {1,..., r} and incidence numbers
{l1,..., lr} is (13)

2 r−2(r−2)!
< r

j=1 lj!
(4.61)

Moreover we have that the number of collections {l1,..., lr} such that li > 0
and ;i li=2(r−1) is bounded from above by 22(r−1). By summing over i0

and putting this estimate together with (4.61), we get

C
C: C g ¦ 0

C ‡ more than one contour

KC |z| |C̄| [ ce |z|2 (4.62)

with some constant c > 0.
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Note that the first term appearing in (4.31) can be handled in a similar
way than the one leading up to Lemma 4.6, and the same result is
obtained. We see then that by choosing z such that e |z|2 [ const, the sum
;C KCz |C̄| converges and is bounded. Hence we get that H(z) is an analytic
function within a circle of radius R(l) with R(l) Q. as l Q 0, and is
bounded by a constant independent of l. Thus

C
C: C g ¦ 0
|C̄|=n

|KC | [ const R(l)−n :=const g(l)n (4.63)

with appropriate constants. This completes the proof of Proposition 4.4
and thus of Theorem 2.1. L

5. TYPICAL PATH BEHAVIOUR

An important aspect of the problem is to understand what a typical
path configuration looks like under the Gibbs measure. This is answered by
the following theorem

Theorem 5.1. With m-probability 1 we have

|Xt | [ (C log(|t|+1))1/(s+1)+Q(X) (5.1)

with a suitable number C > 0 and a functional Q(X), independent of t.

The strategy of proving Theorem 5.1 is to transfer the typical behav-
iour for the reference process to the level of the Gibbs measure.

Lemma 5.2. Take an arbitrary a > 0. Then there exist C > 0 and
h > 0 such that

P({X ¥X : max
0 [ t [ 1

|Xt | \ a}) [ Ce−has+1
(5.2)

Proof. For the reference process we have the Dirichlet operator on
L2(Rd, dn)

Lf=−Df+2(N log k0, Nf) (5.3)

The corresponding Dirichlet form is

E(f, f)=−F fDf dn+2 F f(N log k0, Nf) dn (5.4)
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Now, by using Lemma 1.12 in ref. 10 we have for an arbitrary function
f ¥ L2(dn) and every N > 0

P({X ¥X : max
0 [ t [ 1

|f(Xt)| \ N}) [
3
N
`E(f, f)+(f, f) (5.5)

Choose f in the form of convolution

f=fa :=1{x ¥ R
d : |x| \ a} f j (5.6)

by picking a mollifier j (with ||j||. <.) such that the edges of the indica-
tor function become smooth enough so that the above convolution falls in
the domain of L. The mollifier can be chosen so that the smoothing
actually takes place around some sphere S(a) of radius a centred at the
origin. More precisely, we choose it such that with a suitable e > 0 we have
fa(x)=1 for x ¥ Rd0S(a+e), fa(x)=0 for x ¥ S(a− e), and fa is some
smooth enough function f̃a otherwise. Denote these three domains by I, II
and III, respectively. Moreover, put N=1 in (5.5); this corresponds to the
situation of the path having gone beyond the given level set some time
within the given time interval. Thus

P( max
0 [ t [ 1

|Xt | \ a) [ 3`||fa ||
2
L2(dn)+(fa, Lfa)L2(dn) (5.7)

We have

||fa ||
2
L2(dn)=F f2

a(x) k2
0(x) dld=F

I
k2

0(x) dld+F
III

f̃2
a(x) k2

0(x) dld (5.8)

By using the bound (4.21) of the ground state, we estimate (and similarly
for III)

F
I

k2
0(x) dld [ ce−has+1

(5.9)

where c, h > 0 are independent of a. On the other hand since f̃a is smooth
enough and maxIII{|Nf̃a |, |Df̃a |, Df̃2

a} [ m <., we get

(f̃a, Lf̃a) [ cŒe−has+1
(5.10)

with suitable cŒ > 0. A similar estimate is obtained also for the other two
domains. L
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Theorem 5.1 will be proven once we will have shown

Lemma 5.3. Suppose there exist some numbers c, h > 0 such that
for any a > 0

P({X ¥X : max
0 [ t [ 1

|Xt | \ a}) [ c e−has+1
(5.11)

Then there exist cŒ > 0 and hŒ > 0 such that for any a > 0

m({X ¥X : max
0 [ t [ 1

|Xt | \ a}) [ cŒe−hŒas+1
(5.12)

Proof. Note that

m({X ¥X : max
0 [ t [ 1

|Xt | \ a})=F qa(X) dm(X) :=M(a) (5.13)

where

qa(X)=˛
0 if max

0 [ t [ 1
|Xt | < a

1 if max
0 [ t [ 1

|Xt | \ a
(5.14)

On the other hand

M(a)= lim
T Q.

> e−l >T
−T >T

−T W(Xt, Xs, t−s) dt dsqa(X) dP(X)

> e−l >T
−T >T

−T W(Xt, Xs, t−s) dt ds dP(X)
:= lim

T Q.

ZT(qa)
ZT

(5.15)

Here P is the measure introduced by (3.11). By the cluster expansion we
have

ZT(qa)=EP[qa] 11+C
r \ 1

C
C1,..., Cr

Cg
i 5 Cg

j =”, i ] j
yN/2 ¨1 i C̄i

D
r

i=1
KCi
2

+ C
C0: C̄0 ¦ yN/2

EP[oa
C] 11+ C

n \ 1
C

C1,..., Cr
Cg

i 5 Cg
j =”, i ] j

Cg
0 5 (1 i Cg

i )=”

D
r

l=1
KCl
2

=EP[qa] Zy
T+ C

C: C̄ ¦ yN/2

EP[oa
C] ZC

T (5.16)
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where yN/2=[0, b] and oa
C=qaoC. Here Zy

T and ZC
T mean the partition

functions over [−T, T]0yN/2 and [−T, T]0(C̄ 2 C̄“), respectively. Here
we denoted by C̄“ the union of intervals having a common time-point with
intervals of C̄. From (5.16)

Em[qa]=EP[qa]
Zy

T

ZT
+ C

C0: C̄0 ¦ yN/2

EP[oa
C0

]
ZC0

T

ZT
(5.17)

follows. By general results in ref. 13 the limits limT Q. Zy
T/ZT respectively

limT Q. ZC0
T /ZT exist, and moreover they are estimated by

Zy
T

ZT
< 23,

ZC0
T

ZT
[ 2 |C̄0 2 C̄

“

0| [ 23 |C̄0| (5.18)

The latter estimate comes from the fact that with every interval in C̄0 at
most two intervals from C̄“

0 can be connected. Hence

Em[qa] [ 23EP[qa]+ C
C0: C̄0 ¦ yN/2

23 |C̄0|EP[oa
C0

] (5.19)

On the other hand we have

EP[qa]=F qa
dP(Xy0

| q0, q1)
gb(q0 | q1)

gb(q0 | q1) dn(q0) dn(q1) [ constEP[qa]
(5.20)

where we used that gb(q1 | q0) \ const in the similar way as at Lemma 4.6.
Furthermore,

EP[oa
C0

] [ (EP[qa])1/2 (EP[o2
C0

])1/2 (5.21)

By the same arguments as in Section 4.3 before we obtain the bound

C
C0: C̄0 ¦ yN/2

EP[o2
C0

]1/2 23 |C̄0| [ const (5.22)

with some constant. Hence we get that

Em[qa] [ const1 EP[qa]+const2 EP[qa]1/2 (5.23)

Lemma 5.2 then implies (5.12). L
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We have thus for the stationary measure m that

m( max
n [ t [ n+1

|Xt | \ (k log n)1/(s+1)) [ const
1

nkhŒ
(5.24)

Now choose k so that khŒ > 1. An application of the Borel–Cantelli lemma
implies then that m-almost surely

|Xt | [ (k log t)1/(s+1) (5.25)

for t \ Tg, with Tg=Tg(X) sufficiently large. Then put Q(X)=
max|t| [ Tg |Xt |. This then completes the proof of the theorem. L

Remark. It may be conjectured that a result similar to Theorem 5.1
can be obtained from the following fact proven in ref. 1 on the reference
measure. The set of paths satisfying

lim inf
|t| Q.

|t|d k0(Xt) > 0, -d > 1 (5.26)

has P-measure 1. Then we expect that a similar property holds also for the
Gibbs measure m.

6. SOME ADDITIONAL PROPERTIES OF GIBBS MEASURES

FOR BOUNDED PAIR POTENTIALS

We devote this final section to proving some further properties of the
Gibbs measure for (A2-2) type pair potentials. This case in particular
covers Nelson’s scalar field model which is further discussed in refs. 12 and
2. In the first subsection we look at certain properties of the Gibbs measure
like its single-time distributions, conditional distributions and covariances.
In the second subsection we establish its uniqueness separately for the cases
a > 2 with no restriction on the coupling constant, respectively a > 1 for
sufficiently weak couplings.

6.1. Some Further Properties of the Gibbs Measure

Theorem 6.1. Consider the Gibbs measure m on (X, A) for V
satisfying assumption (A1) and W satisfying (A2-2). Then the following
hold:
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1. m is invariant with respect to time shift and time reflection, i.e.,

m p yt=m, -t ¥ R, where (ysX)t=Xs+t

m p J=m, where (JX)t=X−t

2. The distributions jT of positions X0 at time t=0 generated by mT

are absolutely continuous with respect to n, i.e., there exist C1, C2 ¥ R,
independent of T and X such that

C1 [
djT

dn
(q) [ C2 (6.1)

for every q ¥ Rd and T > 0. Moreover limT Q.(djT/dn)(q)=(dj/dn)(q)
exists pointwise.

3. The conditional distributions mT( · | X0=q) converge locally
weakly to m( · | X0=q), for all q ¥ Rd.

4. For any bounded functions F (1), F (2) on Rd we have the estimate
on the covariance

covm(F(1)
s ; F (2)

t )=Em[F (1)
s F (2)

t ]−Em[F(1)
s ] Em[F (2)

t ]

|covm (F (1)
s ; F (2)

t )| [ const
sup |F (1)

s | sup |F (2)
t |

|t− s|b+1

where b > 0, F (1)
s :=F(1)(Xs), F (2)

t :=F(2)(Xt), and the constant prefactor is
independent of s, t and F (1), F (2).

Proof. (1) The invariance properties are obvious; they carry over
from the reference process and the invariance properties of the pair
interaction:

W[T1, T2](X)=W[T1+t, T2+t](y−1
t X)

W[T1, T2](X)=W[−T2, −T1](JX)

with arbitrary T1 < T2, t. Indeed, look at the measures m[T1+t, T2+t] and
m[−T2, −T1]; since the limits T1 Q −., T2 Q. yield the same measure m, the
statements follow.

(2) Notice that

djT

dn
(q)=

ZT(q)
ZT

(6.2)
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where

ZT(q)=F e−> T
−T > T

−T W(Xt, Xs, s− t) ds dt dPT(X | X0=q) (6.3)

By the cluster expansion we obtain

ZT(q)=1+ C
n \ 1

C
C1,..., Cn
0 ¨1 i Cg

i

D
n

i=1
KCi

+ C
C0: 0 ¦ Cg

0

KC0
(q) 11+ C

p \ 1
C

C1,..., Cp

Cg
0 5 (1 i Cg

i )=”

D
p

i=1
KCi
2 (6.4)

The first term gives the contribution of all clusters disjoint from t=0. In
the second we take C0 containing t=0 and sum over all collections of
clusters disjoint from C0. The weight for C0 is obtained like in (3.10) by
integration with respect to all variables {Xyi

} and {qk} except for q0=q.
Evidently, for all q ¥ R, estimate (4.1) for KC0

(q) stays true. Next we use
the general representation for the logarithm of the partition function (see
ref. 13):

log ZT= C
n \ 1

C
gn :={C1,..., Cn}

Dgn
D

C ¥ gn

KC (6.5)

The second summation is performed over all connected collections of n
clusters. The coefficients Dg are such that (6.5) is absolutely convergent
whenever the clusters satisfy estimate (4.1). Moreover, for any fixed
m ¥ [−N, N]

C
n \ 1

C
gn

m ¥ gg
n

|Dgn
| D

C ¥ gn

|KC | [ C (6.6)

holds, with some number C > 0. (We denoted gg=1C ¥ g Cg.) Let g0 denote
the collection of all possible C0 containing the origin; the corresponding
weights are KC0

. Hence we obtain from (6.5)

log ZT(q)− log ZT

= C
n \ 1

C
gn: gn 5 g

0
]”

gg
n … [−N, N]

Dgn
D

C ¥ gn

K̂C − C
n \ 1

C
gn: gn 5 g

0
]”

gg
n … [−N, N]

Dgn
D

C ¥ gn

KC (6.7)
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where

K̂C=˛KC if Cg ^ ¦ 0 (C ¨ g0)

KC(q) if Cg ¦ 0 (C ¥ g0)
(6.8)

Clearly,

C
n \ 1

C
gn: gn 5 g

0
]”

gg
n … [−N, N]

Dgn
D

C ¥ gn

K̂C= C
n \ 1

C
gn: gg

n ¦ 0
gg

n … [−N, N]

Dgn
D

C ¥ gn

K̂C (6.9)

and by (6.6) we get

: C
n \ 1

C
gn: gn 5 g

0
]”

gg … [−N, N]

Dgn
: D

C ¥ gn

|K̂C | [ C (6.10)

A similar estimate is obtained for the second term appearing in (6.7).
Hence (6.1) follows.

The existence of the limit claimed in (2) follows by (6.7) and

C
n \ 1

C
gn: gn 5 g

0
]”

gg
n … [−N, N]

Dgn
D

C ¥ gn

K̂C Q C
n \ 1

C
gn: gn 5 g

0
]”

Dgn
D

C ¥ gn

K̂C as N Q.

(6.11)

The convergence above comes about by combining (6.6) with (6.9). The
second term in (6.7) can be treated completely similarly.

(3) The convergence of mT( · | X0=q) to m( · | X0=q) is proved in a
similar way as the convergence of mT to m was proven above. In this case
KC has to be changed for K̂C, and as established before, K̂C0

(q0) satisfies
estimate (4.1).

(4) First note that for any bounded function F on Rd

Em[F0]=En[F0] f{0}+ C
C0: 0 ¦ Cg

0

KC0
(F0) f{Cg

0 } (6.12)

and

KC0
(F0)=EP[F0oC0

] (6.13)

where F0=F(X0), see (3.10) and (3.12). Furthermore, fA=limT Q.

ZA
T/ZT, and is estimated as before like |fA | [ 2 |A|. For A1 5 A2=” we

moreover have

|fA1 2 A2
−fA1

fA2
| [ const

2 |A1|+|A2|

dist(A1, A2)z
(6.14)
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with some z > 0. This estimate can easily be obtained by the general results
from ref. 13. Now we can write

Em[F (1)
s F (2)

t ]=En[F (1)
s ] En[F(2)

t ] f{s, t}

+ C
C1

Cg
1 ¦ s, Cg

1 ^ ¦ t

EP[F (1)
s oC1

] En[F (2)
t ] f{t 2 Cg

1 }

+ C
C2

Cg
2 ¦ t, Cg

2 ^ ¦ s

En[F(1)
s ] EP[F(2)

t oC2
] f{s 2 Cg

2 }

+ C
C1, C2: Cg

1 5 Cg
2 =”

C1: Cg
1 ¦ s, C2: Cg

2 ¦ t

EP[F (1)
s oC1

] EP[F (2)
t oC2

] f{Cg
1 2 Cg

2 }

+ C
C: C g ¦ s, t

EP[F(1)
s F (2)

t oC] f{C g}

From this formula and (6.12) we obtain

covm(F (1)
s ; F (2)

t )

=En[F (1)
s ] En[F(2)

t ](f{s, t} −f{s} f{t})

+ C
C1

Cg
1 ¦ s, Cg

1 ^ ¦ t

En[F (2)
t ] EP[F (1)

s oC1
](f{t 2 Cg

1 } −f{t} f{Cg
1 })

+ C
C2

Cg
2 ¦ t, Cg

2 ^ ¦ s

En[F (1)
s ] EP[F (2)

t oC2
](f{s 2 Cg

2 } −f{s} f{Cg
2 })

+ C
C1, C2: Cg

1 5 Cg
2 =”

Cg
1 ¦ s, Cg

2 ¦ t

EP[F(1)
s oC1

] EP[F (2)
t oC2

](f{Cg
1 2 Cg

2 } −f{Cg
1 } f{Cg

2 })

+ C
C: C g ¦ s, t

EP[F (1)
s F (2)

t oC] f{C g}

− C
C2: Cg

2 ¦ s, t
En[F (1)

s ] EP[F (2)
t oC2

] f{s} f{Cg
2 }

− C
C1: Cg

1 ¦ s, t
En[F (2)

t ] EP[F (1)
s oC1

] f{t} f{Cg
1 }

− C
C1, C2: Cg

1 5 Cg
2 ]”

Cg
1 ¦ s, Cg

2 ¦ t

EP[F(1)
s oC1

] EP[F (2)oC2
] f{Cg

1 } f{Cg
2 }.
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For estimating the first four terms at the r.h.s. of the above sum we use
(6.14) along with the bound

|EP[F(i)oCi
]| [

sup |F (i)|
(diam Cg)zŒ+1

ECi
(dŒ, lŒ) (6.15)

i=1, 2, where ECi
(dŒ, lŒ) is the function appearing at the r.h.s. of estimate

(4.1) with slightly modified entries (dŒ, lŒ instead of d, l; dŒ > 1) so that
(4.29) still holds. Here zŒ=d − dŒ > 0, and we used in addition that

1
(diam Cg)zŒ+1

1
dist(s, Cg)z+1

[
1

|s− t|b+1
(6.16)

whenever t ¥ Cg (and similarly for s ¥ Cg), and

1
(diam Cg

1 )zŒ+1
1

(diam Cg
2 )zŒ+1

1
dist(Cg

1 , Cg
2 )z

[
1

|s− t|b+1
(6.17)

for s ¥ Cg
1 , t ¥ Cg

2 , and b=min{z, zŒ} > 0.
Next, in the fifth term above we used that diam Cg \ |t− s| when

s, t ¥ Cg, and that

|EP[F(1)
s F (2)

t oC]| [ sup |F (1)
s | sup |F (2)

t |
EC(dŒ, lŒ)

(diam Cg)zŒ+1
. (6.18)

For the remaining three terms in the sum above we apply the same argu-
ment. Thus for the full sum the corresponding bounds become

const
sup |F (1)

s | sup |F (2)
t |

|s− t|b+1
EC1

(dŒ, lŒ) EC2
(dŒ, lŒ) 2 |Cg

1 |+|Cg
2 | (6.19)

whenever s ¥ Cg
1 , t ¥ Cg

2 , respectively

const
sup |F1 | sup |F2 |

|s− t|b+1
EC(dŒ, lŒ) 2 |C g| (6.20)

whenever s ¥ Cg
1 or t ¥ Cg

2 or s, t ¥ Cg. Then by summing over C1, C2

respectively C, we finally obtain the similar results as in Section 4.3. L

6.2. Uniqueness of the Gibbs Measure

In this section we prove uniqueness of the Gibbs measure for two
cases. One is for pair potentials of (A2-2) type with exponent a > 2 in
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which case we apply a general argument involving no restriction on the
coupling constant. The other is for the same class of pair potentials with
exponent a > 1 in which case we use cluster expansion and need to restrict
to sufficiently small values |l|.

First we deal with the a > 2 case. Consider mT( · | Y) given by

dmT(X | Y)=
1

ZT(Y)
e−lWT(X | Y) dPT(X | Y) (6.21)

Here

WT(X | Y)=WT(X)+WY
T(X) (6.22)

is the interaction energy in configuration X ¥X[−T, T] given the boundary
configuration Y=Y− 2 Y+, with Y− ¥X(−., −T] resp. Y+ ¥X[T,.). WT is as
given by the integral in (3.1), and

WY
T(X)=2 F

−T

−.
dt F

T

−T
ds W(Y−

t , Xs, t−s)+2 F
.

T
dt F

T

−T
ds W(Y+

t , Xs, t−s)
(6.23)

PT( · | Y)=PT( · | Y−
−T, Y+

T ) is the conditional distribution of the reference
measure for the given boundary condition Y which depends only on the
positions attained at ±T since P is Markovian. ZT(Y) is the partition
function for mT( · | Y). It is easily checked that {mT( · | Y)}, with Y ¥

C(R0[−T, T], Rd), 0 < T <., is a compatible and regular family of
conditional probability measures defining a specification in the sense of
DLR theory. The limiting Gibbs measure m on X is well defined also in
DLR sense and it is consistent with this specification (see ref. 7 for termi-
nology and details).

Theorem 6.2. Suppose V is of (A1) class and W is of (A2-2) class
with a > 2. Then whenever the Gibbs measure m exists, it is unique in DLR
sense.

Proof. We show that there exists a number L > 0 such that for any
cylinder function f on C(R, Rd) and any pair of Gibbs measures m1 and m2

consistent with (6.21)

Em1
[f] [ LEm2

[f] (6.24)

First we show that once having (6.24), uniqueness follows. Indeed, suppose
that the set of Gibbs measures consistent with (6.21) contains at least two
elements. Then, since the set of Gibbs measures consistent with a given
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specification is convex, by the Krein–Milman theorem it would then follow
that at least two extremal Gibbs measures m1 ] m2 existed. Then some event
E ¥A would separate them, i.e., we would have m1(E)=1 and m2(E)=0.
Equivalently, for any e > 0 a cylinder event EŒ would exist such that
m1(EŒ) > 1− e and m2(EŒ) < e. Now choose f above to be the indicator
function of this event. Then putting e < 1/(L+1) would contradict (6.24).

We now turn to proving (6.24). By using estimate (2.2) with a > 2 it is
easy to obtain that

|WY
T(X)| [ c1 (6.25)

uniformly in T and in configurations X and Y, with some constant c1 > 0.
Now take TŒ=T− y, with some y > 0 to be specified later on. We take an
arbitrary path X ¥X and break it up into X̄y=X|[−TŒ, TŒ], X−

y =X|(−T, −TŒ)

and X+
y =X|[TŒ, T]. We have then

WT(X)=WTŒ(X̄y)+WX −
y 2 X+

y
TŒ (X̄y) (6.26)

where in the second term integration is made over [−T, T]20[−TŒ, TŒ]2

… R2 using the pieces X−
y , X+

y of path X. Again, by estimate (2.2) we get

|WX −
y 2 X+

y
TŒ (X̄y)| [ c2y (6.27)

uniformly in the pieces of X, with some c2 > 0.

Lemma 6.3. There is a number M=M(y) > 0 such that for any Y
and T > 0

1
M

[
ZT(Y)

ZTŒ
[ M (6.28)

where ZTŒ is defined by (2.8).

Proof. By (6.25) and (6.27) we obtain

ZT(Y)=F e−lWT(X | Y) dPT(X | Y)

[ e |l| c1 F e−lWT(X) dPT(X | Y)

[ e |l| c1+|l| c2y F e−lWTŒ(X̄y) dPT(X | Y) (6.29)
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Put for a shorthand q ±=(X̄y)±TŒ, i.e., the positions of X̄y at the endpoints
of the interval [−TŒ, TŒ]. Then by using the Markov property of the ref-
erence measure we have furthermore

F e−lWTŒ(X̄y) dPT(X | Y)

=F e−lWTŒ(X̄y) dPTŒ(X̄y | q−, q+) gy(q− | Y−
−T) gy(q+ | Y+

T ) dn(q−) dn(q+)
(6.30)

with gy as under (2.6). Using now (4.11) we get that

1
2 [ 1−Ce−Ly [ gy(q ± | Y ±

±T) [ 1+Ce−Ly [ 2 (6.31)

for large enough y. Fixing now such a y we obtain by (6.29), (6.30) and
(6.31) that

ZT(Y) [ 2e |l| (c1+c2y)ZTŒ (6.32)

Similarly, we get the converse inequality

ZT(Y) \ 1
2 e−|l| (c1+c2y)ZTŒ (6.33)

(6.32) and (6.33) taken together imply then (6.28) with M=2e |l| (c1+c2y). L

Now we return to showing (6.24). Let f=fTŒ be the cylinder function
fTŒ=fTŒ(X|[−TŒ, TŒ]). By using the DLR equation we obtain

Em1
[fTŒ]=F

fTŒ(X̄y) e−lWT(X | Y)

ZT(Y)
dPT(X | Y) dm1(Y)

[ M
1

ZTŒ
F fTŒ(X̄y) e−lWT(X | Y) dPT(X | Y) dm1(Y)

By the same arguments as above we obtain furthermore

F fTŒ(X̄y) e−lWT(X | Y) dPT(X | Y) dm1(Y) [ M F fTŒ(X̄y) e−lWTŒ(X̄y) dPTŒ(X̄y)
(6.34)

and from here

Em1
[fTŒ] [ M2EmTŒ

[fTŒ] (6.35)

This completes the proof of the theorem. L
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Next we turn to the a > 1 case.

Theorem 6.4. Suppose V is of class (A1) and W is of class (A2-2)
with a > 1. Then for sufficiently small |l| ] 0 the limiting Gibbs measure m

is unique.

Proof. We consider the class of bounded local functions FS on
C(R, Rd) indexed by finite intervals S … R (that is, FS is measurable with
respect to AS). For the uniqueness of the Gibbs measure it suffices to prove
that for any increasing sequence {Tn}, Tn Q., and any corresponding
sequence of boundary conditions {Yn}

lim
n Q.

EmTn
( · | Yn)[FS]=Em[FS] (6.36)

for arbitrary FS of the above class. In order to show this we express the
conditional expectations appearing above in terms of the cluster represen-
tation. We suppose without loss of generality that S consists of a finite
union of intervals of the partition of [−T, T].

From now on we follow the steps of the cluster expansion we
explained in Sections 3 and 4 before. Take the same partition of the inter-
val [−T, T] into disjoint segments as before. The interaction energy can
then be written as

WT(X | Y)= C
0 [ i < j [ N

Wyi, yj
(Xyi

, Xyj
)+ C

0 [ i [ N−1
WY

yi, T(Xyi
) (6.37)

with the same notations as before, and with

WY
yi, T(Xyi

)=2 F
T

−.
ds F

yi

dt W(Xt, Y−
s , s− t)+2 F

.

T
ds F

yi

dt W(Xt, Y+
s , s− t)

(6.38)

By (2.2) the estimate

|WY
yi, T | [

Cb
(dist(yi, [−T, T]c)+1)a−1 (6.39)

easily follows. (Here [−T, T]c=R0[−T, T] and dist(yk, [−T, T]c)=
min{kb, (N−k−1) b}.) We fix the positions Xt0 =Y−

−T=q0, Xt1 =q1,...,
XtN−1

=qN−1, XtN =Y+
T =qN. Similarly to (3.11) we introduce the auxiliary

measure

dPY
T=D

N−1

k=0

e−WY
yk, T(Xk)

ZT
yk

(Y | qk, qk+1)
dPb(Xyk

| qk, qk+1) D
N−1

k=1
dnk(qk) (6.40)
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where

ZT
yk

(Y | qk, qk+1)=EPb( · | qk, qk+1)[e−WY
yk, T(Xyk

)] (6.41)

Also, for every cluster C we consider the function oY
C defined similarly to

(3.10) by changing the measure PT for PY
T . If ±T ¨ Cg then oY

C does not
depend on Y. If −T ¥ Cg and/or T ¥ Cg then oY

C depends on Y−
−T=q0

and/or Y+
T =qN, respectively. Next we define the weights like under (3.12):

KY
C=EP

Y
T
[oY

C] (6.42)

The partition function ZT(Y) can be expressed then similarly to (3.13) with
these adapted objects. Since Lemma 4.3 holds unchanged and gives a
uniform estimate in paths, oY

C is estimated in the same way as oC. Combining
thus (6.39) with (4.27) we obtain

exp 1 − C |l|1/3

(dist(yk, [−T, T]c)+1)a−1
2 [ exp(−WY

yk, T(Xyk
))

ZY
yk

(Y | qk, qk+1)

[ exp 1 C |l|1/3

(dist(yk, [−T, T]c)+1)a−1
2

(6.43)
This implies then that

|KC | D
yk ¥1 c̄

c ¥ C

exp 1 − C |l|1/3

(dist(yk, [−T, T]c)+1)a−1
2

[ |KY
C | [ |KC | D

yk ¥1 c̄

c ¥ C

exp 1 C |l|1/3

(dist(yk, [−T, T]c)+1)a−1
2 (6.44)

At this point it is useful to make two remarks:

1. For sufficiently small |l| ] 0 the bound

|KY
C | [ 2 |C̄| |KC | (6.45)

holds (the factor 2 can actually be replaced by any number larger than 1).
Thus the cluster estimate (4.29) obtained in Proposition 4.4 stays essentially
valid:

C
C: C g ¦ 0
|C̄|=n

|KY
C | [ cgŒ(l) (6.46)

with gŒ(l)=2g(l), going to zero as l Q 0.
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2. For any fixed C we have

lim
T Q.

oY
C=oC (6.47)

as noted before, and thus

lim
T Q.

KY
C=KC (6.48)

both converging uniformly in Y.

Then in (6.36) we have

EmT
[FS |Y]=EP

Y
T
[FS]

ZS
T(Y)

ZT(Y)

+ C
n \ 1

C
{C1,..., Cm}: Cg

i 5 Cg
j ]”

Cg
i 5 S ] 0, Ci … [−T, T], i=1,..., m

EP
Y
T
5FS D

m

i=1
oY

Ci
6 Z 2 C̄

T (Y)
ZT(Y)

(6.49)

with the same notations as in (5.16), and specifically Z 2 C̄
T =Z[−T, T]01m

i=1 C̄i
.

Take now a collection of intervals {yi}=U; the partition function
Z[−T, T]01yi ¥Uyi

(Y) :=ZU
T (Y) can then be written like in (3.13) only by

changing KC for KY
C and summing over collections of clusters lying inside

[−T, T]01yi ¥U yi (i.e., Cg 5 “U=”).

Lemma 6.5. For sufficiently small |l| ] 0 we have the following
properties of fU

T (Y) :=ZU
T (Y)/ZT(Y). On the one hand,

|fU
T (Y)| [ 2 |U| (6.50)

|U| denoting the number of intervals contained in U. On the other hand,

lim
T Q.

fU
T (Y)=fU (6.51)

uniformly in Y. Moreover, fU also satisfies (6.50) above.

Proof. The estimate (6.50) follows by the same token as explained
around (5.18). To obtain (6.51) we use a similar decomposition as in (6.5)
to write

fU
T (Y)=1+ C

g={C}
C … [−T, T]

D2U(g) D
C ¥ g

KY
C (6.52)
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and

fU=1+ C
g={C}

D2U(g) D
C ¥ g

KC (6.53)

where both summations go over non-empty collections of clusters g={C}
for which 1C ¥ g Cg 5Ug ]” (Ug is the set of all time points occurring in U),
and moreover in the first term the clusters are required to lie inside [−T, T].
The coefficients appearing in both sum are such that the series (6.53) is
absolutely convergent whenever for the KC occurring there (4.29) is satisfied
with some small enough bound g(l). Hence by (6.45) we see that the series
(6.52) is term by term dominated by ;g |D2 (g)| <C ¥ g 2 |C̄| |KC | (here summa-
tion goes over all collections of clusters crossing U). Then by putting

K̂Y
C=˛K

Y
C if C lies inside [−T, T]

0 otherwise
(6.54)

and using Lebesgue’s dominated convergence theorem we obtain that
fY

U Q fU uniformly as T Q.. L

We now return to the expression (6.49). By the ergodicity of the refer-
ence measure

lim
T Q.

EPY
T
[FS]=EP[FS] (6.55)

and hence the first term of (6.49) converges to EP[FS] fS. By the same
argument as above we obtain also

lim
T Q.

EP
Y
T
5FS D

m

i=1
oY

Ci
6=EP
5FS D

m

i=1
oCi
6 (6.56)

uniformly in Y, and we also have

:EP
Y
T
5FS D

m

i=1
oY

Ci
6: [ max |FS | D

m

i=1
2 |Ci | |KCi

| (6.57)

By (6.57) we then obtain

C
{C1,..., Cm}

Cg
j 5 Sg=”, j=1,..., m

D
m

i=1
2 |C̄i | |KCi

| 2 |1 i C̄i |2 |Sg| [ 2 |Sg| C
|Sg|

m=1

1 |Sg|
m
21 C

C: C ¦ 0
4 |C̄| |KC |2

m

[ 2 |Sg| C
|Sg|

m=1

1 |Sg|
m
21 C

.

n=2
4ncg(l)n2m

<.
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Here Sg denotes the time points occurring in S. By using now this estimate
together with (6.56), and applying Lebesgue’s dominated convergence
theorem once again we arrive to

EP[FS] fS+ C
.

m=1
C

{C1,..., Cm}
Cg

i 5 Sg ]”, i=1,..., m

EP
5FS D

m

i=1
oCi
6 fS 2 (1 i C̄i)=Em[FS]

(6.58)

This completes the proof of the theorem. L
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